There is an identity involving sinh x and cosh x that resembles a Pythagorean identity from trigonometry

SCORE: /7 PTS
[a]

Write that identity involving sinh x and coshx. You do NOT need to prove the identity

\Cosh®> — smhw = 'J @

[b] Write the identity for cosh2x that uses both sinhx and coshx simultancously. You do NOT need to prove the identity.
lcosh 2x = eoshx + sinh x| (D
[c] Use the results of [a] and [b] to find and prove an identity for cosh2x that uses only sinh x
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[d]

If tanhx = -2, find sinhx using identities .

You must explicitly show the use of the identities but you do NOT need to prove the identities

Do NOT use inverse hyperbolic functions nor their logarithmic formulae i m your solution.
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Rewrite csch (51n5) in terms of exponential functions and simplify.
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Write and prove a formula for cosh(x + ») in terms of sinhx, sinh y, coshx and cosh y. SCORE: /6 PTS
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Sketch the general shape and position of the following graphs. - L SCORE: /3 PTS
(Don’t worry about specific X — or } — coordinates.) G) Q?A'DE;—‘D &y Me
f(x)=cosh™ x f(x)=sinh™" x f(x) = tanh x
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Prove that g(x) =

1
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SCORE:
You may use any 1dent|t1es that you found in part [1] of the Hyperbolic Functions Supplement without proving them
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1In* s the inverse of f(x) =

tanh x by simplifying g(f(x)).
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